Ensemble segmentation for GBM brain tumors on MR images using confidence-based averaging.

نویسندگان

  • Jing Huo
  • Kazunori Okada
  • Eva M van Rikxoort
  • Hyun J Kim
  • Jeffry R Alger
  • Whitney B Pope
  • Jonathan G Goldin
  • Matthew S Brown
چکیده

PURPOSE Ensemble segmentation methods combine the segmentation results of individual methods into a final one, with the goal of achieving greater robustness and accuracy. The goal of this study was to develop an ensemble segmentation framework for glioblastoma multiforme tumors on single-channel T1w postcontrast magnetic resonance images. METHODS Three base methods were evaluated in the framework: fuzzy connectedness, GrowCut, and voxel classification using support vector machine. A confidence map averaging (CMA) method was used as the ensemble rule. RESULTS The performance is evaluated on a comprehensive dataset of 46 cases including different tumor appearances. The accuracy of the segmentation result was evaluated using the F1-measure between the semiautomated segmentation result and the ground truth. CONCLUSIONS The results showed that the CMA ensemble result statistically approximates the best segmentation result of all the base methods for each case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Confidence-based ensemble for GBM brain tumor segmentation

It is a challenging task to automatically segment glioblastoma multiforme (GBM) brain tumors on T1w post-contrast isotropic MR images. A semi-automated system using fuzzy connectedness has recently been developed for computing the tumor volume that reduces the cost of manual annotation. In this study, we propose a an ensemble method that combines multiple segmentation results into a final ensem...

متن کامل

Comparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction

Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...

متن کامل

Automated Tumor Segmentation Based on Hidden Markov Classifier using Singular Value Decomposition Feature Extraction in Brain MR images

ntroduction: Diagnosing brain tumor is not always easy for doctors, and existence of an assistant that                                                      facilitates the interpretation process is an asset in the clinic. Computer vision techniques are devised to aid the clinic in detecting tumors based on a database of tumor c...

متن کامل

Quantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation

Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...

متن کامل

An Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network

Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 40 9  شماره 

صفحات  -

تاریخ انتشار 2013